This is a reformulation of Newton's Laws of Motion, developed by W. R. Hamilton and J. L. Lagrange, using Hamilton's principle of least action and then further analysing the resultant formulae using methods in calculus of variations.

### Related categories 1

### Sites 4

History Topic: The Brachistichrone Problem

This problem was posed by Johann Bernoulli in 1696 and several mathematicians rose to the challenge.

Lagrangian and Hamiltonian Mechanics

A detailed introduction to the basic features and mathematical formalisms involved.

Lagrangians and Hamiltonians for High School Students

A discussion of Lagrangian and Hamiltonian dynamics is presented at a level which should be suitable for advanced high school students.

The Principle of Least Action

A brief review of the mathematics and physics involved in the principle of least action.

Last update:

April 15, 2015 at 16:35:09 UTC
Copyright © 1998-2017 AOL Inc.

Archive of dmoz.org provided by Internet Marketing Ninjas.

Archive of dmoz.org provided by Internet Marketing Ninjas.

Built by CMBuild